Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
J Med Virol ; 96(3): e29504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445794

RESUMEN

While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Latencia del Virus , Animales , Humanos , Ratones , Herpesvirus Humano 4/genética , FN-kappa B , Linfocitos B , Péptidos y Proteínas de Señalización Intercelular
2.
Nat Nanotechnol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480836

RESUMEN

The efficacy of STING (stimulator of interferon genes) agonists is due to various factors, primarily inefficient intracellular delivery, low/lack of endogenous STING expression in many tumours, and a complex balance between tumour control and progression. Here we report a universal STING mimic (uniSTING) based on a polymeric architecture. UniSTING activates STING signalling in a range of mouse and human cell types, independent of endogenous STING expression, and selectively stimulates tumour control IRF3/IFN-I pathways, but not tumour progression NF-κB pathways. Intratumoural or systemic injection of uniSTING-mRNA via lipid nanoparticles (LNPs) results in potent antitumour efficacy across established and advanced metastatic tumour models, including triple-negative breast cancer, lung cancer, melanoma and orthotopic/metastatic liver malignancies. Furthermore, uniSTING displays an effective antitumour response superior to 2'3'-cGAMP and ADU-S100. By favouring IRF3/IFN-I activity over the proinflammatory NF-κB signalling pathway, uniSTING promotes dendritic cell maturation and antigen-specific CD8+ T-cell responses. Extracellular vesicles released from uniSTING-treated tumour cells further sensitize dendritic cells via exosome-containing miRNAs that reduced the immunosuppressive Wnt2b, and a combination of LNP-uniSTING-mRNA with α-Wnt2b antibodies synergistically inhibits tumour growth and prolongs animal survival. Collectively, these results demonstrate the LNP-mediated delivery of uniSTING-mRNA as a strategy to overcome the current STING therapeutic barriers, particularly for the treatment of multiple cancer types in which STING is downregulated or absent.

3.
Cell Rep ; 43(3): 113852, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427558

RESUMEN

The NLRP3 inflammasome is essential for caspase-1 activation and the release of interleukin (IL)-1ß, IL-18, and gasdermin-D in myeloid cells. However, research on species-specific NLRP3's physiological impact is limited. We engineer mice with the human NLRP3 gene, driven by either the human or mouse promoter, via syntenic replacement at the mouse Nlrp3 locus. Both promoters facilitate hNLRP3 expression in myeloid cells, but the mouse promoter responds more robustly to LPS. Investigating the disease impact of differential NLRP3 regulation, we introduce the D305N gain-of-function mutation into both humanized lines. Chronic inflammation is evident with both promoters; however, CNS outcomes vary significantly. Despite poor response to LPS, the human promoter results in D305N-associated aseptic meningitis, mirroring human pathology. The mouse promoter, although leading to increased CNS expression post-LPS, does not induce meningitis in D305N mutants. Therefore, human-like NLRP3 expression may be crucial for accurate modeling of its role in disease pathogenesis.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Inflamasomas/metabolismo , Inflamación , Síndrome , Interleucina-1beta/metabolismo , Caspasa 1/metabolismo
4.
Int J Pharm ; 652: 123836, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266940

RESUMEN

The most common influenza vaccines are inactivated viruses produced in chicken eggs, which is a time-consuming production method with variable efficacy due to mismatches of the vaccine strains to the dominant circulating strains. Subunit-based vaccines provide faster production times in comparison to the traditional egg-produced vaccines but often require the use of an adjuvant to elicit a highly protective immune response. However, the current FDA approved adjuvant for influenza vaccines (MF59) elicits a primarily helper T-cell type 2 (Th2)-biased humoral immune response. Adjuvants that can stimulate a Th1 cellular response are correlated to have more robust protection against influenza. The cyclic dinucleotide cGAMP has been shown to provide a potent Th1 response but requires the use of a delivery vehicle to best initiate its signalling pathway in the cytosol. Herein, acetalated dextran (Ace-DEX) was used as the polymer to fabricate microparticles (MPs) via double-emulsion, electrospray, and spray drying methods to encapsulate cGAMP. This study compared each fabrication method's ability to encapsulate and retain the hydrophilic adjuvant cGAMP. We compared their therapeutic efficacy to Addavax, an MF59-like adjuvant, and cGAMP Ace-DEX MPs provided a stronger Th1 response in vaccinated BALB/c mice. Furthermore, we compared Ace-DEX MPs to spray dried MPs composed from a commonly used polymer for drug delivery, poly(lactic-co-glycolic acid) (PLGA). We observed that all Ace-DEX MPs elicited similar humoral and cellular responses to the PLGA MPs. Overall, the results shown here indicate Ace-DEX can perform similarly to PLGA as a polymer for drug delivery and that spray drying can provide an efficient way to produce MPs to encapsulate cGAMP and stimulate the immune system.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Escualeno , Animales , Ratones , Humanos , Dextranos , Polisorbatos , Vacunas de Subunidad , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos
5.
Nat Biomed Eng ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049469

RESUMEN

As a chronic autoinflammatory condition, ulcerative colitis is often managed via systemic immunosuppressants. Here we show, in three mouse models of established ulcerative colitis, that a subcutaneously injected colon-specific immunosuppressive niche consisting of colon epithelial cells, decellularized colon extracellular matrix and nanofibres functionalized with programmed death-ligand 1, CD86, a peptide mimic of transforming growth factor-beta 1, and the immunosuppressive small-molecule leflunomide, induced intestinal immunotolerance and reduced inflammation in the animals' lower gastrointestinal tract. The bioengineered colon-specific niche triggered autoreactive T cell anergy and polarized pro-inflammatory macrophages via multiple immunosuppressive pathways, and prevented the infiltration of immune cells into the colon's lamina propria, promoting the recovery of epithelial damage. The bioengineered niche also prevented colitis-associated colorectal cancer and eliminated immune-related colitis triggered by kinase inhibitors and immune checkpoint blockade.

6.
Proc Natl Acad Sci U S A ; 120(50): e2122178120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051771

RESUMEN

Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.


Asunto(s)
Síndrome de Radiación Aguda , Receptor Toll-Like 2 , Humanos , Ratones , Animales , Receptor Toll-Like 6 , Ligandos , Síndrome de Radiación Aguda/tratamiento farmacológico , Primates , Fibroblastos
7.
Nat Biotechnol ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749267

RESUMEN

Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome-immunotherapy interventions.

9.
Cell ; 186(11): 2288-2312, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37236155

RESUMEN

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Asunto(s)
Inflamasomas , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasas/metabolismo , Muerte Celular , Inflamasomas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis
10.
Nat Rev Immunol ; 23(10): 635-654, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36973360

RESUMEN

The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1ß, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.


Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Genes MHC Clase I , Inmunidad Innata/genética , Inflamasomas/metabolismo , Mamíferos
11.
PLoS Pathog ; 19(2): e1011168, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812267

RESUMEN

Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Receptores Virales , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Ratones Transgénicos , Receptores Virales/genética , SARS-CoV-2 , Tropismo Viral
12.
Cancer Discov ; 13(1): 19-22, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36620884

RESUMEN

SUMMARY: In this issue, Hattori and colleagues capitalized on targeted small-molecule covalent inhibitors of one KRAS mutant with a G12C substitution and of other oncoproteins to create drug-peptide conjugates that serve as cancer neoantigens that prompt an immune response to oncogene-mutant cancer cells. This immunotherapy strategy can serve as an effective approach to overcome the treatment-induced resistance that limits the effectiveness of essentially all small molecule-based targeted anticancer drugs. See related article by Hattori et al., p. 132 (9).


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
13.
Sci Adv ; 9(4): eade6998, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706179

RESUMEN

Degenerative diseases affecting the nervous and skeletal systems affect the health of millions of elderly people. Optineurin (OPTN) has been associated with numerous neurodegenerative diseases and Paget's disease of bone (PDB), a degenerative bone disease initiated by hyperactive osteoclastogenesis. In this study, we found age-related increase in OPTN and nuclear factor E2-related factor 2 (NRF2) in vivo. At the molecular level, OPTN could directly interact with both NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) for up-regulating antioxidant response. At the cellular level, deletion of OPTN resulted in increased intracellular reactive oxygen species and increased osteoclastogenic potential. At the tissue level, deletion of OPTN resulted in substantially increased oxidative stress derived from leukocytes that further stimulate osteoclastogenesis. Last, curcumin attenuated hyperactive osteoclastogenesis induced by OPTN deficiency in aged mice. Collectively, our findings reveal an OPTN-NRF2 axis maintaining bone homeostasis and suggest that antioxidants have therapeutic potential for PDB.


Asunto(s)
Osteítis Deformante , Animales , Ratones , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/metabolismo , Osteítis Deformante/metabolismo , Osteogénesis
14.
Cell Host Microbe ; 31(2): 243-259.e6, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36563691

RESUMEN

Elevated levels of cytokines IL-1ß and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1ß released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1ß release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1ß release. After release, IL-1ß stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1ß secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1ß and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-6 , SARS-CoV-2 , Citocinas/metabolismo , Interleucina-1beta/metabolismo
15.
J Hepatol ; 78(2): 271-280, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36152761

RESUMEN

BACKGROUND & AIMS: Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS: Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS: The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS: MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS: The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Animales , Ratones , Humanos , Virus de la Hepatitis A/genética , Péptido Hidrolasas , Ratones Endogámicos C57BL , Inmunidad Innata , Proteasas Virales
16.
Nature ; 610(7931): 373-380, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198789

RESUMEN

An immunosuppressive tumour microenvironment is a major obstacle in the control of pancreatic and other solid cancers1-3. Agonists of the stimulator of interferon genes (STING) protein trigger inflammatory innate immune responses to potentially overcome tumour immunosuppression4. Although these agonists hold promise as potential cancer therapies5, tumour resistance to STING monotherapy has emerged in clinical trials and the mechanism(s) is unclear5-7. Here we show that the administration of five distinct STING agonists, including cGAMP, results in an expansion of human and mouse interleukin (IL)-35+ regulatory B cells in pancreatic cancer. Mechanistically, cGAMP drives expression of IL-35 by B cells in an IRF3-dependent but type I interferon-independent manner. In several preclinical cancer models, the loss of STING signalling in B cells increases tumour control. Furthermore, anti-IL-35 blockade or genetic ablation of IL-35 in B cells also reduces tumour growth. Unexpectedly, the STING-IL-35 axis in B cells reduces proliferation of natural killer (NK) cells and attenuates the NK-driven anti-tumour response. These findings reveal an intrinsic barrier to systemic STING agonist monotherapy and provide a combinatorial strategy to overcome immunosuppression in tumours.


Asunto(s)
Linfocitos B Reguladores , Células Asesinas Naturales , Neoplasias , Animales , Linfocitos B Reguladores/inmunología , Humanos , Inmunidad Innata/inmunología , Inmunoterapia , Factor 3 Regulador del Interferón , Interferón Tipo I/inmunología , Interleucinas/antagonistas & inhibidores , Células Asesinas Naturales/inmunología , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Nucleótidos Cíclicos/metabolismo , Microambiente Tumoral
17.
Nat Nanotechnol ; 17(12): 1322-1331, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302963

RESUMEN

The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically 'cold' pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , AMP Cíclico , Macrófagos Asociados a Tumores , Zinc/farmacología , Células Endoteliales , Proteínas de la Membrana , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Adenosina Monofosfato
18.
Cell Rep Med ; 3(9): 100744, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099917

RESUMEN

Plasma cell responses are associated with anti-tumor immunity and favorable response to immunotherapy. B cells can amplify anti-tumor immune responses through antibody production; yet B cells in patients and tumor-bearing mice often fail to support this effector function. We identify dysregulated transcriptional program in B cells that disrupts differentiation of naive B cells into anti-tumor plasma cells. The signaling network contributing to this dysfunction is driven by interleukin (IL) 35 stimulation of a STAT3-PAX5 complex that upregulates the transcriptional regulator BCL6 in naive B cells. Transient inhibition of BCL6 in tumor-educated naive B cells is sufficient to reverse the dysfunction in B cell differentiation, stimulating the intra-tumoral accumulation of plasma cells and effector T cells and rendering pancreatic tumors sensitive to anti-programmed cell death protein 1 (PD-1) blockade. Our findings argue that B cell effector dysfunction in cancer can be due to an active systemic suppression program that can be targeted to synergize with T cell-directed immunotherapy.


Asunto(s)
Neoplasias Pancreáticas , Receptor de Muerte Celular Programada 1 , Animales , Interleucinas/metabolismo , Activación de Linfocitos , Ratones , Neoplasias Pancreáticas/terapia , Células Plasmáticas , Receptor de Muerte Celular Programada 1/genética
19.
Mol Pharm ; 19(9): 3125-3138, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35913984

RESUMEN

Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.


Asunto(s)
Células Asesinas Naturales , Proteínas de la Membrana , Animales , Células Presentadoras de Antígenos/metabolismo , Inmunoterapia , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL
20.
J Immunol ; 208(11): 2445-2449, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595304

Asunto(s)
Inmunidad Innata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...